Influence of spatial variability and its implication in the evaluation of grain yield in common bean genotypes

Keywords: Phaseolus vulgaris L., Repetition, Phenotypic variation

Abstract

Well-designed field experiments are able to deal with spatial variability, resulting in accurate and useful information. However, it is known that there are variations in the experimental areas, in addition to those indirectly induced by driving practices. In this sense, the aim of this paper was to decompose the causes of variation, making it possible to verify the effect of the genotype x block interaction and its implications, in the evaluation of grain yield in fixed and segregating bean genotypes. The experiment was conducted in the field crop in the 2020/21 senson in Lages - SC. The treatments were composed by the genotypes: i) IPR88 Uirapuru x BAF35, in the F2 generation; ii) IPR88 Uirapuru x BAF35, in the F5 generation; iii) IPR88 Uirapuru parent and iv) BAF35 parent; arranged in a randomized block experimental design with more than one repetition per block, with 3 blocks and 4 repetitions per treatment in each block. With the grain yield data (g plot-1), analysis of variance and decomposition of the causes of variation by orthogonal contrasts were performed. Analysis of variance showed significance for block, genotype and the genotype x block interaction (p<0.05). Similarly, the decomposition into genotypes within each block also revealed significance (p<0.05). In addition, the decomposition of the genotype variation in the different blocks showed a greater fraction of this sum of squares, present in only one block, being inherent mainly to the parents. Thus, the repletion use within the blocks made it possible to properly verify the spatial variation this the experiment, which is essential when applying the selection.

Downloads

Download data is not yet available.

References

ALLARD, R. W. Princípios do melhoramento genético das plantas. São Paulo: E. Blücher, 1971. 381 p.
ARIEF, V. N.; DESMAE, H.; HARDNER, C.; DELACY, I. H.; GILMOUR, A.; BULL, J. K.; & BASFORD, K. E. Utilization of multiyear plant breeding data to better predict genotype performance. Crop Science, v. 59, n. 2, p. 480-490, 2019. DOI: 10.2135/cropsci2018.03.0182
BERNARDELI, A.; ROCHA, J. R. A. S. D. C.; BORÉM, A.; LORENZONI, R.; AGUIAR, R.; SILVA, J. N. B.; LAMAS COSTA, M. D. B. Modeling spatial trends and enhancing genetic selection: An approach to soybean seed composition breeding. Crop Science, v. 61, n. 2, p. 976-988, 2021. DOI: 10.1002/csc2.20364
BERNAL-VASQUEZ, A. M.; MÖHRING, J.; SCHMIDT, M.; SCHÖNLEBEN, M.; SCHÖN, C. C.; PIEPHO, H. P. The importance of phenotypic data analysis for genomic prediction-a case study comparing different spatial models in rye. BMC genomics, v. 15, n. 1, p. 1-17, 2014. DOI: 10.1186/1471-2164-15-646
BORGES, A.; GONZÁLEZ-REYMUNDEZ, A.; ERNST, O.; CADENAZZI, M.; TERRA, J.; GUTIÉRREZ, L. Can spatial modeling substitute for experimental design in agricultural experiments?. Crop Science, v. 59, n. 1, p. 44-53, 2019. DOI: 10.2135/cropsci2018.03.0177
BURGUEÑO, Juan. Spatial analysis of field experiments. Applied statistics in agricultural, biological, and environmental sciences, p. 319-344, 2018. DOI: 10.2134/appliedstatistics.2016.0011.c12
CAMPOS, J. F. D.; CARNEIRO, A. P. S.; PETERNELLI, L. A.; CARNEIRO, J. E. D. S.; SILVA, M. J. D.; CECON, P. R. Classificação de famílias do feijoeiro sob diferentes cenários de dependência espacial e precisão experimental. Pesquisa Agropecuária Brasileira [online]. v. 51, n. 02, pp. 105-111, 2016. DOI: 10.1590/S0100-204X2016000200002
CARGNELUTTI FILHO, A.; STORCK, L.; TOEBE, M.; BURIN, C.; ALVES, B. M.; FACCO, G.; NEU, I. M. M. Precisão experimental relacionada a tamanhos de parcelas, números de tratamentos e repetições em nabo forrageiro. Pesquisa Agropecuária Brasileira, v. 49, p. 428-439, 2014. DOI: 10.1590/S0100-204X2013000700007
CASLER, M. D. Fundamentals of experimental design: Guidelines for designing successful experiments. Agronomy Journal, v. 107, n. 2, p. 692-705, 2015. DOI: 10.2134/agronj2013.0114
CLARKE, G. P. Y.; STEFANOVA, K. T. Optimal design for early‐generation plant‐breeding trials with unreplicated or partially replicated test lines. Australian & New Zealand Journal of Statistics, v. 53, n. 4, p. 461-480, 2011. DOI: 10.1111/j.1467-842X.2011.00642.x
COCHRAN, W.; COX, G.M. Experimental Designs. New York: John Wiley, 1957. 611p.
CONAB - COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da Safra Brasileira de Grãos, Brasília, DF, v. 9, safra 2021/22, n. 11 décimo primeiro levantamento, agosto 2022.
DA SILVA, É. D. B.; XAVIER, A.; FARIA, M. V. Joint modeling of genetics and field variation in plant breeding trials using relationship and different spatial methods: A simulation study of accuracy and bias. Agronomy, v. 11, n. 7, p. 1397, 2021. DOI: 10.3390/agronomy11071397
ELIAS, A. A.; RABBI, I.; KULAKOW, P.; JANNINK, J. L. Improving genomic prediction in cassava field experiments using spatial analysis. G3: Genes, Genomes, Genetics, v. 8, p. 53– 62, 2018. DOI: 10.1534/g3.117.300323
FALCONER, D. S.; MACKAY, T. F. C. Introduction to quantitative genetics. 1996. Harlow, Essex, UK: Longmans Green, v. 3, 1996.
KONZEN, E. R.; RECCHIA, G. H.; CASSIERI, F.; CALDAS, D. G. G.; BERNY MIER Y TERAN, J. C.; GEPTS, P.; TSAI, S. M. DREB genes from common bean (Phaseolus vulgaris L.) show broad to specific abiotic stress responses and distinct levels of nucleotide diversity. International journal of genomics, v. 2019, 2019. DOI: 10.1155/2019/9520642
LOS, F. G. B.; ZIELINSKI, A. A. F.; WOJEICCHOWSKI, J. P.; NOGUEIRA, A.; DEMIATE, I. M. Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Current Opinion in Food Science, v. 19, p. 63-71, 2018. DOI: 10.1016/j.cofs.2018.01.010
PIMENTEL-GOMES, F. Curso de EstatísticaExperimental. 14. ed. Piracicaba: ESALQ, 2000. 477p.
SALVADOR, F. V.; PEREIRA, G. D. S.; SOUZA, M. H. D.; SILVA, L. M. B. D.; SANTANA, A. S.; DE PAULA, I. G.; ... CARNEIRO, J. E. D. S. Correcting experimental data for spatial trends in a common bean breeding program. Crop Science, v. 62, n. 2, p. 825-838, 2022. DOI: 10.1002/csc2.20703
SELLE, M. L.; STEINSLAND, I.; HICKEY, J. M.; GORJANC, G. Flexible modelling of spatial variation in agricultural field trials with the R package INLA. Theoretical and Applied Genetics, v. 132, p. 3277– 3293, 2019. DOI:10.1007/s00122-019-03424-y
SILVA, M. J. D.; CARNEIRO, A. P. S.; FERES, A. L. G.; CARNEIRO, J. E. S.; SANTOS, N. T.; CECON, P. R. Spatial dependence in experiments of progeny selection for bean (Phaseolus vulgaris L.) yield. Revista Ceres, v. 63, p. 477-485, 2016.
SOUZA, E.A. de; GERALDI, I.O.; RAMALHO, M.A.P. Alternativas experimentais na avaliação de famílias em programas de melhoramento genético do feijoeiro. Pesquisa Agropecuária Brasileira, v.35, p.1765-1771, 2000.
VELAZCO, J. G.; RODRÍGUEZ-ÁLVAREZ, M. X.; BOER, M. P.; JORDAN, D. R.; EILERS, P. H. C.; MALOSETTI, M.; VAN EEUWIJK, F. A. Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Theoretical and Applied Genetics, v. 130, p. 1375– 1392, 2017. DOI: 10.1007/s00122-017-2894-4
VENCOVSKY, R.; BARRIGA, P. Genética biométrica no Fitomelhoramento. 1992.
Published
2024-01-22
Section
Scientific Articles