Arsenic: behavior in the environment, plant uptake mechanisms and human health risks

  • Letúzia Maria De Oliveira University of florida
  • Regla Toujaguez Universidade Federal de Alagoas- UFAL-
  • Edna Santos de Souza Universidade Federal Rural da Amazônia- UFRA
  • Antonio Rodrigues Fernandes Universidade Federal Rural da Amazônia- UFRA

Resumo

 

 Negative impacts caused by arsenic (As) in soils and waters have attracted public interest due to contamination of ecosystems and human populations dwelling in the vicinity of its generating sources. The main anthropogenic sources of such contamination result from the oxidation of sulfide residues containing arsenopyrite in piles of mining tailings and the leaching of soils with high background of As. This contamination presents serious consequences to the functional components of ecosystems. Through plant uptake, this element can enter the food chain and cause several health problems, even at low exposure (<10 mgL–1). Therefore, to reduce the environmental impacts caused by contamination of soil, watercourses, and groundwater, the use of phytotechnologies applicable to the remediation of contaminated environments have been highlighted. The objective was to describe the current state of research on As, focusing on plant behavior and risks to health and the environment. Phytoremediation is a promising technique to recover local sites contaminated by trace elements such as As. Unfortunately, few plant species have presented phytoremediation potential so far. In the relation between soil-plant-behavior of As and human health risk, studies should be directed to the discovery of species with remediation potential and to analysis on the interactions of As with Pb, Zn and Cd, naturally associated with secondary minerals. To this end, the mineralogy and stability of these minerals should be studied via X-ray diffraction and X-ray absorption spectroscopy, combined with bioaccessibility analyses.

Downloads

Não há dados estatísticos.

Biografia do Autor

Letúzia Maria De Oliveira, University of florida

Soil and Water Science Department

Regla Toujaguez, Universidade Federal de Alagoas- UFAL-
Instituto de Geografia, Desenvolvimento e Meio Ambiente (IGDEMA)

Referências

AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY-ATSDR. Health and human services. Disponível em: <http://www.atsdr.cdc.gov/spl/index.html>. Acesso em: 17 jan. 2014.

BUNDSCHUH, J.; MAITYC, J. P.; NATHD, B., BABA, A.; GUNDUZ, O.; KULP, T. R.; JEAN, J.; KAR, S.; YANG, H.; TSENG, Y.; BHATTACHARYA, P.; CHEN, C. Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: Potential role in contamination of freshwater resources. Journal of Hazardous Materials, v. 262, p. 951–959, 2013.

CANTONI, M. Arsênio em solos do Estado de São Paulo: método analítico, concentração e sorção. 2010. 72 p. Dissertação (Mestrado em Agricultura Tropical e Subtropical) - Instituto Agronômico de Campinas, Campinas, 2010.

CHAKRABORTI, D.; RAHMAN, M. M.; MURRILL, M.; DAS, R.; SIDDAYYA,; PATIL, S. G.; SARKAR, A.; DADAPEER H.J.; YENDIGERI, S.; AHMED, R.; DAS, K. K. Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, v. 262, p. 1048–1055, 2013.

CHENG, H.; Hu, Y.; LUO, J.; XU, B.; ZHAO, J. Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials. 165, P.13–26, 2009.

CIPRIANI, H. N.; DIAS, L. E.; COSTA, M. D.; CAMPOS, N. V.; AZEVEDO, A. A.; GOMES, R. J.; FIALHO, I. F.; AMEZQUITA, S. P. M. Arsenic toxicity in Acacia mangium willd. And Mimosa caesalpiniaefolia benth. Seedlings. Revista Brasileira de Ciência do Solo, v. 37, P.1423-1430, 2013.

CURI, N.; FRANZMEIER, D. P. Effect of parent rocks on chemical and mineralogical properties of some Oxisols in Brazil. Soil Science Society of America Journal, v. 51, n. 1, p. 153-158, 1987.

DA SACCO L., BALDASSARRE, A., MASOTTI, A. Diet's role in the toxicity of inorganic arsenic (iAs): A journey from soil to children's mouth. Journal of Geochemical Exploration, v.131, p. 45–51, 2013.

DANH, L. T.; TRUONG, P.; MAMMUCARI, R.; FOSTER, N. A Critical Review of the Arsenic Uptake Mechanisms and Phytoremediation Potential of Pteris vittata. International Journal of Phytoremediation, v. 16, p. 429-453, 2014.

DE OLIVEIRA, L. M.; MA, L. Q.; SANTOS, J. A. G.; GUILHERME, L. R. G.; LESSL, J. T. Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environmental Pollution, v.184, p. 187-192, 2014.

FANRONG, Z.; ZHOU, W.; QIU, B.; ALI, S.; WU, F.; ZHANG, G. Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. Journal of Plant Nutrition and Soil Science, v. 174, p. 249-256, 2011.

FIGUEIREDO, B. R.; BORBA, R. P.; ANGÉLICA, R. S.; Arsenic occurrence in Brazil and human exposure. Environmental Geochemistry & Health, Springer, v. 29, p. 109-118, 2007.

FIGUEIREDO, B. R.; BORBA, R. P.; ANGÉLICA, R. S.; "Arsênio no Brasil e exposição humana.", "Geologia Médica no Brasil", 11/2006, ed. 1, CPRM-Serviço Geológico do Brasil, v. 1, p.64-70, 2006.

GONZAGA, M. I. S.; SANTOS, J. A. G.; MA, L. Q. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environmental Pollution, V. 143, p. 254-260, 2006.

INOUHE, M.; ITO, R.O.S.; SASADA, N.; TOHOYAMA, H.; JOHO, M. Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiology, v.123, p.1029-1036, 2000.

KABATA-PENDIAS, A. Trace Elements in Soils and Plants, 4th Ed. Boca Raton: CRC, 2011. 505 p.

LESSL, J. T., MA, L. Q. Sparingly-Soluble Phosphate Rock Induced Significant Plant Growth and Arsenic Uptake by Pteris vittata from Three Contaminated Soils. Environmental science & technology, v.47, n.10, p. 5311 -5318, 2013.

MA, L. Q.; KOMAR, K. M.; CONG, T.; ZHANG, W, YONG, C. A fern that hyperaccumulates arsenic. Nature, v. p. 409-579, 2001.

MANDAL, B. K.; SUZUKI, K. T. Arsenic round the world: a review. Talanta, v. 58, n. 2, p. 201-235, 2002.

RAHIMI, M.; FARHADI, R.; POOR, H. Y. Phytoremediation of Arsenic. International journal of Agronomy and Plant Production, V. 3 n. 7, p. 230-233, 2012.

SHAW, A. J. Heavy metal tolerance in plants: evolutionary aspects. New York: CRC, 1989. 355 p.

SRIVASTAVA, M., MA, L.Q., SANTOS, J.A.G. Three new arsenic hyperaccumulating ferns. Science of the Total Environment, v. 364, n. 1, p. 24-31, 2006.

TOUJAGUEZ, R., ONOB, F. B., MARTINSB, V., CABRERA, P. P., BLANCO, A. V., BUNDSCHUH, J., GUILHERME, L.R.G. Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials V. 262, p. 1004– 1013, 2013.

TU, S., MA, L.Q., McDONALD, G.E., BONDADA, B. Arsenic absorption, speciation and thiol formation in excised parts of Pteris vittata in the presence of phosphorus. Environmental and Experimental Botany, v. 51, n. 1, p. 121-131, 2004.

United STATES ENVIRONMENTAL PROTECTION AGENCY. Arsenic treatment technologies for soil, waste and water: report EPA-542-R-02-004. Washington, 2002. Disponível em: <http://www.epa.gov/>. Acessado em 10 de jan. 2014.

WANG, J., WANG, J.I., ZHAO, F.J., MEHARG, A.A., RAAB, A., FELDMANN, J., McGRATH, S.P. Mechanisms of arsenic hyperaccumulation in Pteris vittata. uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, v. 130, n. 3, p. 1552-1561, 2002.

Publicado
2014-07-03
Seção
Artigos de Revisão