Mechanisms of the internal structure and operation of Panicum aquaticum in response to arsenic

  • Marinês Ferreira Pires Universidade Federal de Lavras
  • Evaristo Mauro de Castro Federal of Lavras University
  • Cynthia de Oliveira Federal of Lavras University
  • Fabricio José Pereira Federal of Lavras University
  • Moacir Pasqual Federal of Lavras University

Resumo

 

 Due to the high toxicity of arsenic, many studies have attempted to improve the techniques for its removal from the environment, using methods such as phytoremediation by tolerant species. To evaluate the tolerance of Panicum aquaticum to contamination by arsenic, both physiological and anatomical evaluations were conducted. The plants were grown in Hoagland and Arnon nutrient solution in a greenhouse for 30 days under six concentrations of arsenic: 0.00, 0.25, 0.50, 1.00, 2.00, and 4.00 mM. Analyses of growth, gas exchange, the anatomy of leaves and roots and of the activity of antioxidant system enzymes were conducted. The relative growth rate, specific leaf area and leaf area ratio were modified in the presence of arsenic. Gas exchange was not affected. The leaf anatomy showed reductions in the epidermal thicknesses on the abaxial face, on the blade and on the chlorenchyma; increases in the set of bulliform cells, in the cuticle thickness and in the area of the sclerenchyma; reductions in the number and distance of vascular bundles; an increase in the stomatal index; an increase in the stomatal functionality only on the adaxial face of the epidermis; and reductions in the number and density of stomata. The roots presented reductions in the thicknesses of the epidermis, endodermis and exodermis and modifications in the Carlquist vulnerability index. Only the catalase activity was affected, showing an increase at the lowest concentrations followed by a decrease at higher concentrations. P. aquaticum proved partially tolerant to arsenic at the lowest concentrations and presented evidence of toxicity at the highest concentrations.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marinês Ferreira Pires, Universidade Federal de Lavras
Possui graduação em Engenharia Florestal pela Universidade Federal de Viçosa (1986), mestrado em Agronomia (Fisiologia Vegetal) pela Universidade Federal de Lavras (1995) e doutorado em Agronomia (Fitotecnia) pela Universidade Federal de Lavras (2002). Atualmente é professor Associado da Universidade Federal de Lavras, Setor de Botânica Estrutural, Departamento de Biologia. Tem experiência nas áreas de Botânica Estrutural, Fisiologia Vegetal, Anatomia Ecológica e Agronomia, com ênfase em Fitotecnia. Desenvolve atividades ligadas à Anatomia das Plantas em Diferentes Condições Ambientais, desenvolvendo análises em Anatomia Quantitativa, Anatomia Ecológica e Estrutura e Função de Órgãos Vegetativos nessa última área, é autor de um livro intitulado: Histologia Vegetal: Estrutura e Função de Órgãos Vegetativos.
Evaristo Mauro de Castro, Federal of Lavras University

Associate Professor of Department of Biology, Sector of Structural Botany, Federal  of Lavras University. He has experience in the areas of Structural Botany, Plant Physiology, Anatomy and Ecological Agronomy,  with an emphasis on Crop Science. Develops activities related to the anatomy of plants in different environmental conditions, developing quantitative analyzes in Anatomy, Anatomy and Ecological Structure and Function of Vegetative Organs.

Cynthia de Oliveira, Federal of Lavras University
Post-Doctoral Researcher, Department of Soil Science. Operates mainly in the areas of Anatomy and Physiology Plant, working with correlations between the structural characteristics and metabolism of plants.
Fabricio José Pereira, Federal of Lavras University
Professor of the Department of Biology, Federal University of Lavras. He has experience in the areas of Structural Botany with emphasis on ecological anatomy, anatomy of the vegetative organs and quantitative anatomy; and also on Plant Physiology with emphasis on biochemistry and plant secondary metabolism.
Moacir Pasqual, Federal of Lavras University

It is coordinator of Agricultural Sciences I of the Coordination of Improvement of Higher Education Personnel (CAPES). He is a professor in the Federal of Lavras University and has experience in Agronomy with emphasis on Plant Science, Plant Breeding and Plant Tissue Culture in fruit species, vegetable crops, ornamentals, oil and coffee.

Referências

BOWLER, C. et al. Manganese superoxide-dismutase can reduce cellular-damage mediated by oxygen radicals in transgenic plants. EMBO Journal, Oxford, v. 10, n. 7, p. 1723-1732, July 1991.

BRASIL. Congresso. Senado Federal. Resolução nº 430, 13 de maio de 2011. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Coleção de Leis da República Federativa do Brasil. Brasília, DF, 13 mai. 2011.

CARNEIRO, M. A. C.; SIQUEIRA, J. O.; MOREIRA, F. M. S. Establishment of herbaceous plants in soils contaminated with heavy metals and inoculation with mycorrhizal fungi. Pesquisa Agropecuária Brasileira, Brasília, v. 6, p. 1443-1452, 2001.

CASTRO, E. M.; PEREIRA, F. J.; PAIVA, R. Histologia vegetal: estrutura e função de órgãos vegetativos. Lavras: UFLA, 2009. 234 p.

FERREIRA, D. F. SISVAR 5.0: sistema de análises estatísticas. Lavras: UFLA, 2007.

FLEXAS, J. et al. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum, Copenhagen, v. 127, p. 343–352, 2006.

GIANNOPOLITIS, C. N.; RIES, S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, Minneápolis, v. 59, p. 309-314, 1977.

GOMES, M. P. et al. Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agricola, Piracicaba, v. 68, n. 5, p. 566-573, Sept./Oct. 2011.

GRISI, F. A. et al. Avaliações anatômicas foliares em mudas de café ‘Catuaí’ e ‘Siriema’ submetidas ao estresse hídrico. Ciência e Agrotecnologia, Lavras, v. 32, n. 6, p. 1730-1736, 2008.

HAVIR, E. A.; MCHALE, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Physiologia Plantarum, Copenhagem, v. 84, p. 450-455, 1987.

HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. Califórnia: Califórnnia Agricultural Experimental Station, 1950. 32 p. (Circular, 347).

JOHANSEN, D. A. Plant microtechnique. 2nd ed. New York: Mc-Graw-Hill, 1940. 523 p.

KRAUS, J. E.; ARDUIN, M. Manual básico de métodos em morfologia vegetal. Rio de Janeiro: EDUR, 1997.

LI, H. et al. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants. Environmental Pollution, Barking, v. 159, p. 30-37, 2011.

MARQUES, T. C. L. L.S. M. et al. Respostas fisiológicas e anatômicas de plantas jovens de eucalipto expostas ao cádmio. Revista Árvore, Viçosa, MG, v. 35, n. 5, p. 997-1006, 2011.

MATEOS-NARANJO, E.; ANDRADES-MORENO, L.; REDONDO-GÓMEZ, S. Tolerance to and accumulation of arsenic in the cordgrass Spartina densiflora Brongn. Bioresource Technology, Essex, v. 104, p. 187–194, 2012.

MIYAZAWA, S. I.; TERASHIMA, I. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate. Plant, Cell & Environment, Oxford, v. 24, p. 279–291, 2001.

NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach cloroplasts. Plant and Cell Physiology, Kyoto, v. 22, p. 867-880, 1981.

PEREIRA, F. J. et al. Anatomical and Physiological Mechanisms of Water Hyacinth Plants to Arsenic Contamination Tolerance. Planta Daninha, Viçosa, MG, v. 29, n. 2, p. 259-267, 2011.

PINZÓN-TORRES, J. A.; SCHIAVINATO, M. A. Crescimento, eficiência fotossintética e eficiência do uso da água em quatro espécies de leguminosas arbóreas tropicais. Hoehnea, São Paulo, v. 35, n. 3, p. 395-404, 2008.

SINGH, H. P. et al. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Journal of Plant Growth Regulation, New York, v. 53, p. 65–73, 2007.

SRIVASTAVA, S. Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, Oxford, v. 37, p. 1937–1941, 2011.

STOEVA, N.; BINEVA, T. Oxidative cahnges and photosynthesis in oat plants grown in As-contamined soil. Bulgarian Journal of Agricultural Sciences, Sofia, v. 29, n. 1, p. 87-95, Jan. 2003.

UTHSCSA image tool: image processing and analises program: version 3.0. San Antonio: University of Texas, 2002. Disponível em: <http://ddsdx. uthscsa.edu/dig/itdesc.html>. Acesso em: 30 jan. 2012.

VACULÍK, M. et al. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution, Barking, v. 163, p. 117-126, 2012.

Publicado
2014-02-25
Seção
Artigos Científicos